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Abstract—Most reduced Hessian methods for equality constrained problems use a basis for the
null space of the matrix of constraint gradients and possess superlinearly convergent rates under
the assumption of continuity of the basis. However, computing a continuously varying null space
basis is not straightforward. Byrd and Schnabel [1] propose an alternative implementation that is
independent of the choice of null space basis, thus obviating the need for a continuously varying null
space basis. In this note, we prove that the primary sequence of iterates generated by one version
of their algorithm exhibits a local 2-step Q-superlinear convergence rate. We also establish that a
sequence of “midpoints,” in a closely related algorithm, is (1-step) Q-superlinearly convergent.

1. INTRODUCTION

The reduced Hessian methods for equality constrained optimization problems usually use a basis
for the null space of the matrix of constraint gradients. Consider the problem

min f(z)
subject to ¢(z) = 0, (1)

where f : R* — Rand ¢: R® — R' are smooth nonlinear functions. Suppose that A(z) is the nxt
matrix whose columns are the gradients of the constraint functions c(z). We assume that A(z) is
of full column rank. Let Z(z) be an orthonormal basis for the null space of A(z)T; hence Z(z) is an
nx (n—t) full rank matrix satisfying A(z)T Z(z) = 0. If L(z, ) = f(z)—c(x)T X is the Lagrangian
for problem (1), then the reduced Hessian matrix can be expressed as Z(z)T V2 L(z, \) Z(z).
The reduced Hessian is dependent on the choice of null space basis Z(z). Many reduced Hessian
algorithms, e.g., Coleman and Conn [2], Nocedal and Overton [3], assume continuity of Z(z). But,
as pointed out by Coleman and Sorensen [4], the standard implementation of the QR factorization
of A(z) via Householder matrices does not necessarily yield a matrix Z(z) with continuously
varying elements. Coleman and Sorensen [4] propose factorization schemes which guarantee local
continuity. In contrast, Byrd and Schnabel [1] propose an algorithm which is independent of
the choice of the null space basis. In Section 2, we present the Byrd-Schnabel algorithm, and in
Section 3, we prove that their algorithm is locally 2-step @-superlinearly convergent.

2. THE BYRD-SCHNABEL ALGORITHM
In this section, we describe the Byrd-Schnabel algorithm.

ALGORITHM.

0. Choose an initial invertible matrix By with the form ZJ QZ,, where Q is a symmetric matrix
and Z is a basis for the null space of A(z¢)T and an initial point x¢; let k = 0.
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1. Compute
di = hg + vg, (2)

where

hi = —Zi Bi' Z{ V f(zx),
Vg = —Ak(AC,E Ak)—l c(zk)-

Set T41 1= Tk + d.

2. Compute Ziy1, T := Z,{Zk.,,l and Sg.

3. Let
By = T{ (Br — Bi)Ti + el
4. Compute
sk = Zjgy1 (Th41 — Tk), (3)
Yk = Z,{H[VxL(mHl, }\k+l) - Vz:L(xk+1 - Zk+1 Z{+1 dk, Ak+1)]v (4)
where
Ae+1 = (A A1) T AR V F (Teta)- (5)
Update B, using the DFP or BFGS update!, By,; = U(By; sk, yx), with secant equation
Byt1 8k = Yk-
5. Set k to k + 1 and go to Step 1. [

‘We note that dj, is the solution to

min Vf(:z:k)Td + % dT Zy By ng 6)
subject to c(zx) + A(zx)Td = 0.

The scaling factor §; can be regarded as an approximation to ||V2L(zk, Ax)||; for example, one
can take (B = ||Bk|| (see Byrd and Schnabel [1]). Here we just assume that {8k} is bounded.

The algorithm we have described above is actually a member of the set of algorithms (or
implementations) proposed by Byrd and Schnabel. In this set, Byrd and Schnabel allow for a
variety of choices for s; and y;. We note that Byrd and Schnabel [1] do not give any convergence
result for any member of their set of algorithms. In the next section, we prove that the algorithm
described above, which we call the “Byrd-Schnabel algorithm,” is locally 2-step Q-superlinearly
convergent.

Next we note that if By is restricted to be positive, the update formula in this algorithm
preserves positive definiteness.

THEOREM 1. If By, is positive definite and y,fsk > 0, Bx > 0, then By is also positive definite.

PROOF. The proof is straightforward: see Coleman and Liao [6]. ]

We will show below that if we only assume that {8} is bounded, then the update will preserve
positive definiteness locally.

3. SUPERLINEAR CONVERGENCE OF THE BYRD-SCHNABEL ALGORITHM

In this section, we discuss the local properties of the Byrd-Schnabel algorithm. We assume

that there is an open convex region, say D, containing a point z. and the following statements
hold:

1See, for example, Dennis and Schnabel {5].
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Al: z, is a local minimizer of problem (1).
A2: The functions f and c are twice continuously differentiable in a neighborhood of z,.
A3: A, := A(z.) is of full column rank ¢.

Ad: V2L(z.,\) is positive definite on the null space of AT, null(AT).

Since the Byrd-Schnabel algorithm is independent of the choice of Z;, we can assume that
Zi = Z(xx) in D where Z(z) is a continuous differentiable function on D. We assume that Z(z),
V2f(z) and V2c(x) are Lipschitz continuous functions of z in D. We make extensive use of the
“0” notation, where ¢y = O(3x) means that the ratio ¢/, remains bounded as k tends toward
infinity. Coleman and Conn [2] prove the following result.

THEOREM 2. If || Bi|| and ||B;!|| are bounded, then ||zx+1 — Z«|| = O(||zx — z«||) and there exist
positive scalars Ko and K1, such that
(@) M = Al < Kollze — z«ll,
(i) |27 V2L (w0, M) Zi — Hal| < K |loi - .,
where )i is defined by (5). If, in addition, z — z,. and
I(Bx = Hu)Ziy1 (k41 — )|
lldll

where di = Tk41 — Tx and H, = ZT V2L(z.,\.)Z,, then xx — z, 2-step superlinearly. |

— 0, (7

LEMMA 3. Assuming that || Bx| and ||B,:1l| are bounded, sy, is given by (3) and yy, is given by (4),
and there exists a positive scalar € such that if |zx — z«|| < €, then

- 1. _
1My, — M~ sl < SIM s,

where M = H:%-
Proo¥. First, we note that

| Myr, — M~ si|| < | M| - |lyx — Hasiell- (8)
By Taylor’s theorem,

Vo L(Tkt1, Met1) — VaL(Tha1 — Zkt1 Zigyq iy Aes1)
= V2L(Tk+1, Met+1) Zk+1 Ziy1 Gk + Ex Byt ZEy, dic, (9)
where ‘
| Bkl = O Zk+1 Ziy1 dill) = O(l|zk+1 — k) = O(max{||zk+1 — ull, Iz — z.||}).
So
Yk = Z241 (Vo L(Tht1, Met1) — VaL(Tks1 — Zi+1 Zips Gk Met1))
= ZF 1 VaL(Th41, Akt 1) D1 Zityy Ak + Zigy1 Br Zir1 Ziyy di.

Thus, by Theorem 2 and provided ¢ is sufficiently small,

lye = Hasll < (12841 V2L(@k41, Met1) Zitr = Hall + 112841 Exe Zia )l s (10)
< (Ko + K1) O(max{||ze+1 — zalls ok — 2ol )l skll- (11)
Hence, it follows that for ¢ sufficiently small,
EAl
lve — Hesil) < ohol
1= 31042

which implies, by (8)
_ 1. _
My~ M5y < SIM sl '
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LEMMA 4. If |[Myr — M~ 1si|| < 3||M~1si| with s, # O, then y{sr > 0 and thus, Biy, is
well-defined in this algorithm. Moreover, there are positive constants g, 1 and az such that

1 Bes1 — Hallm < [(1 — a0 63)*% + 01 k]| Bk — Hallm + 02 0%,

where ag € (0,1}, ok := max{||zr+1 — .||, |k — 24|}, and

, { M[Be —Halsell (g g
k=

|Br — Hallm || M~ 15|
0 otherwise.

PROOF. We first note that
T — IIl = | ZF Zi+1 — ZF Zkll = | ZF (Zr41 — Zi)|l = O(ox).
Thus,

|\ Bx. — Bi|| = ||TF B Tk — Bk — Bx(T¥ T — I)|| < T B Tre — Bl + |B8e| |1 TF T — I||
= | TT Bk Tx — T{ By + T¢ Bk — Bl + 18| ITi T — T + Ti — I||
< (ITF Bl + | Be DT — Il + Bl ITE N + 1) T — I

= O(o%) + O(ox) = O(ok). (Since {Bx} is bounded.) (12)

This implies _
1Bk — Hull < || Bk — Hull + O(0k).- (13)
Noting (11), this lemma thus follows from Lemma 3.1 of Dennis and Moré (7). ]

THEOREM 5. Assume that 3 ||zx — .|| < oo, || Bxk|| and ||B;!|| are bounded. Then we have

1Bk — Hu]skl|

— 0.
lzk+1 — zl

PROOF. The argument is standard and derives from Dennis and Moré [7]. See Coleman and
Liao [6] for details. "

From Theorem 2, we now need to show that Y ||zx — z.|| < oo and ||Bi|| and ||Bg?!|| are
bounded. The following lemma is Corollary 3.14 of Coleman and Conn [2].

LEMMA 6. Provided the smallest eigenvalue of Bj_; and Bk is greater than a positive scalar K,
there exist positive scalars € and 6 such that if =

lek-1—zall <&, llox —zull <&, 1B —H M <6,

then 1
lze+1 — zall < Sllzk-1 — 24 |l- |

With the above lemma and Lemma 4, using the same technique employed in [2,8], we thus
have the following result.

THEOREM 7. Suppose that the sequence {zy, B} is generated by the algorithm with the initial
quantities xo, By, where By is symmetric positive definite, and {fi} is bounded. Then there exist
positive scalars € and 6 such that if

leo—zll <e, and |[Bo— Hallm <5,
then ||Bx — H.| < 26, for k =0,1,..., and

Z |lzx — zu|| < 0. (]
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THEOREM 8. Suppose that the sequence {zi, By} is generated by the algorithm with the initial
quantities zg, Bg, where By = Z&r Q Zp and Q is a symmetric matrix, and {0} is bounded. Then
there exist positive scalars € and é such that if

lzo —z:l| <&, and ||Q - ViL(zs, M| <6,
then ||Bx — H.|| < 26, for k =0,1,..., and {xx} converges to z, at a 2-step Q-superlinear rate.
ProOF. Redefine ¢ if necessary so that

lzo —z.ll <&, and [|Q - ViL(z., )| <6,

imply ||Bo — Hx«||lm < 6. The result follows immediately from Theorems 2, 5 and 7. 1

As a consequence of Theorem 8, we can further restrict € and 8, if necessary, so that
(Tix)T B(Tkz) > pl|z||?, for some p > 0, and || Tiz|| > (1 — pr~1)Y2|z||, for all k = 0,1,...,
and z € R", where |8x| < k and we can assume that « > 1. Thus,

&7 Byz = (Tix)” Bi(Tkz) + Br(zTz — (Tiz)” (Tkz))
> (Tiz)" Be(Tkz) — s(|lzl|® — (1 — ps~b)||2?)
> pllz|? - pllz|? = 0.

Therefore, if we assume that {0x} is bounded, then the update preserves positive definiteness
locally.

4. CONCLUDING REMARKS

We note that Byrd and Schnabel [1] also suggest that one can take dy = hy + ), where
O = —Ak(AT Ag)~le(zk + hi). Since ||vg — k|| < O(||hk||?), for this choice of di, by further
restricting ¢, if necessary, Lemma 3 holds and so do Lemma 4 and Theorem 5. Noting that
Lemma 6 is valid for this choice of dy (see Coleman and Conn [2]), Theorems 7 and 8 follow.
Therefore, the algorithm is still 2-step Q-superlinearly convergent. Moreover, by Theorem 2.5 of
Byrd [9], the sequence {z + hi} is (1-step) Q-superlinearly convergent.

Our result applies to our particular choices of s, and yx. However, other choices are also
possible. For example, we can choose s := Z7 (zk+1 — zk) and yx = Z7T [V L(zk + h, \) —
VzL(zk, k)] as suggested by Coleman and Conn (2], and it is easy to prove that all the above
results are also valid for this modification (provided the algorithm is changed by putting Step 4
before Step 2).

Finally, we note that Coleman [10] suggests a slight generalization of the Byrd-Schnabel algo-
rithm: in Step 3 let

By = T (B, — Cy)Ti + Ck, (14)

where Cj is symmetric but otherwise arbitrary. It is easy to show that, if {C} is bounded, i.e.,
ICk|l| € ke, k =1,2,..., for some k. > 0, then the algorithm is still locally 2-step Q-superlinearly
convergent.
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